Sliding motion along a frictionless inclined plane: Difference between revisions
No edit summary |
|||
(One intermediate revision by the same user not shown) | |||
Line 3: | Line 3: | ||
[[File:Blockonincline.png|thumb|500px|right|The brown triangle is the fixed inclined plane and the black block is placed on it with a dry frictionless surface of contact.]] | [[File:Blockonincline.png|thumb|500px|right|The brown triangle is the fixed inclined plane and the black block is placed on it with a dry frictionless surface of contact.]] | ||
The scenario here is a dry block (with a stable surface of contact) on a dry ''fixed'' inclined plane, with <math>\theta</math> being the angle of inclination with the horizontal axis. | The scenario here is a dry block (with a stable surface of contact) on a dry ''fixed'' frictionless inclined plane, with <math>\theta</math> being the angle of inclination with the horizontal axis. | ||
The extremes are <math>\theta = 0</math> (whence, the plane is horizontal) and <math>\theta = \pi/2</math> (whence, the plane is vertical). | The extremes are <math>\theta = 0</math> (whence, the plane is horizontal) and <math>\theta = \pi/2</math> (whence, the plane is vertical). | ||
Line 17: | Line 17: | ||
===The two candidate forces=== | ===The two candidate forces=== | ||
Assuming no external forces are applied, there are | Assuming no external forces are applied, there are two candidate forces on the block: | ||
{| class="sortable" border="1" | {| class="sortable" border="1" | ||
Line 28: | Line 28: | ||
[[File:mgcomponentsforincline.png|thumb|300px|right|Component-taking for the gravitational force.]] | [[File:mgcomponentsforincline.png|thumb|300px|right|Component-taking for the gravitational force.]] | ||
===Taking components of the gravitational force=== | ===Taking components of the gravitational force=== | ||
Latest revision as of 03:02, 21 September 2021
This article discusses a scenario/arrangement whose statics/dynamics/kinematics can be understood using the ideas of classical mechanics.
View other mechanics scenarios

The scenario here is a dry block (with a stable surface of contact) on a dry fixed frictionless inclined plane, with being the angle of inclination with the horizontal axis.
The extremes are (whence, the plane is horizontal) and (whence, the plane is vertical).
Though the picture depicts a square cross section, this shape assumption is not necessary.
A more general scenario that includes the case of an inclined plane with friction is sliding motion along an inclined plane.
Basic components of force diagram
A good way of understanding the force diagram is using the coordinate axes as the axis along the inclined plane and normal to the inclined plane. For simplicity, we will assume a two-dimensional situation, with no forces acting along the horizontal axis that is part of the inclined plane (in our pictorial representation, this no action axis is the axis perpendicular to the plane).
The two candidate forces
Assuming no external forces are applied, there are two candidate forces on the block:
Force (letter) | Nature of force | Condition for existence | Magnitude | Direction |
---|---|---|---|---|
gravitational force | unconditional | where is the mass and is the acceleration due to gravity | vertically downward, hence an angle with the normal to the incline and an angle with the incline | |
normal force | unconditional | adjusts so that there is no net acceleration perpendicular to the plane of the incline | outward normal to the incline |

Taking components of the gravitational force
The most important thing for the force diagram is understanding how the gravitational force, which acts vertically downward on the block, splits into components along and perpendicular to the incline. The component along the incline is and the component perpendicular to the incline is . The process of taking components is illustrated in the adjacent figure
Component perpendicular to the inclined plane

In this case, assuming a stable surface of contact, and that the inclined plane does not break under the weight of the block, and no other external forces, we get the following equation from Newton's first law of motion applied to the axis perpendicular to the inclined plane:
where is the normal force between the block and the inclined plane, is the mass of the block, and is the acceleration due to gravity. acts inward on the inclined plane and outward on the block. Some observations:
Value/change in value of | Value of | Comments |
---|---|---|
(horizontal plane) | The normal force exerted on a horizontal surface equals the mass times the acceleration due to gravity, which we customarily call the weight. | |
(vertical plane) | The block and the inclined plane are barely in contact and hardly pressed together. | |
increases from to | reduces from to . The derivative is | The force pressing the block and the inclined plane reduces as the slope of the incline increases. |
For simplicity, we ignore the cases and unless specifically dealing with them.
Component along (down) the inclined plane
For the axis down the inclined plane, the gravitational force component is . There are no other forces in this direction, so, if denotes the acceleration measured positive in the downward direction, we get:
After cancellation of , we get:
Note that if the block is sliding upward (for instance, if given an initial upward velocity) this acceleration functions as retardation, whereas if the block is sliding downward (which may happen if the block is placed at rest, or given an initial downward velocity, or of it turns back after sliding upward) then the acceleration increases the speed.
Behavior for a block initially placed at rest
Kinematics
The kinematic evolution in the second case is given as follows, if we set as the time when the block is placed, we have the following (here, the row variable is written in terms of the column variable):
vertical displacement (call ) | horizontal displacement (call ) | ||||
---|---|---|---|---|---|