Angle of friction

From Mech
Revision as of 21:49, 20 January 2010 by Vipul (talk | contribs)

Definition

Given two surfaces, the angle of friction (sometimes also termed the angle of repose, though that term has another meaning in a related context) between the two surfaces is defined numerically as:

where is the limiting coefficient of static friction.

It can be defined in the following ways:

  1. It is the angle that a fixed inclined plane made up of one surface must make with the horizontal so that a body with the second surfaces placed on it just starts slipping. In other words, for any angle smaller than , slipping does not begin on its own and for any angle larger than , slipping begins on its own.
  2. Consider a block placed on a fixed horizontal plane such that the surfaces of contact are the two desired surfaces. Then, is the angle such that the force needed to pull the block in a particular horizontal direction is minimum if the block is pulled at an angle with that horizontal direction.

For more information about motion on an inclined plane, refer sliding motion along an inclined plane.

Range of values

First surface Second surface Condition (radians) (degrees) (radians) (degrees)
Aluminimum Mild steel Dry and clean
Aluminimum Aluminimum Dry and clean
Copper Steel Dry and clean
Copper Copper Dry and clean ? ? ?
Wood Concrete Dry and clean ? ? ?
Wood Metal Dry and clean ? ? ?
Wood Metal Wet ?
Wood Wood Dry and clean ? ? ?
Wood Wood Wet ? ? ?
Mild steel Mild steel Dry and clean
Hard steel Hard steel Dry and clean

For more, see The Engineer's Handbook and Engineering Toolbox.

External links

Instructional video links

  • MIT OCW lecture on friction by Walter Lewin does not explicitly introduce the term "angle of repose" but derives the expression for it and also demonstrates an experiment to calculate it (time interval: 02:24 -- 08:58; continue on for more)