Changes

Jump to: navigation, search

Pulley system on a double inclined plane

109 bytes added, 00:07, 13 August 2011
no edit summary
This article is about the following scenario. A fixed triangular wedge has two inclines <math>I_1</math> and <math>I_2</math> making angles <math>\alpha_1</math> and <math>\alpha_2</math> with the horizontal, thus making it a [[involves::double inclined plane]]. A [[involves::pulley]] is affixed to the top vertex of the triangle. A string through the pulley has attached at its two ends blocks of masses <math>m_1</math> and <math>m_2</math>, resting on the two inclines <math>I_1</math> and <math>I_2</math> respectively. The string is inextensible. The coefficients of static and kinetic friction between <math>m_1</math> and <math>I_1</math> are <math>\mu_{s1}</math> and <math>\mu_{k1}</math> respectively. The coefficients of static and kinetic friction between <math>m_2</math> and <math>I_2</math> are <math>\mu_{s2}</math> and <math>\mu_{k2}</math> respectively. Assume that <math>\mu_{k1} \le \mu_{s1}</math> and <math>\mu_{k2} \le \mu_{s2}</math>.
 
We assume the pulley to be massless so that its moment of inertia can be ignored for the information below.
==Summary of cases starting from rest==
Bureaucrats, emailconfirmed, Administrators
534
edits

Navigation menu